
The Development of Complex Data Structures
Using Object Enhanced Time Petri Nets

Dahlia Al- Janabi
Dept.of Automation

Technical University of Cluj-Napoca
Cluj- Napoca, Romania

dahliajanabi@gmail.com

Tiberiu S. Letia
Dept. of Automation

Technical University of Cluj- Napoca
Cluj- Napoca, Romania

tiberiu.letia@aut.utcluj.ro

Abstract—The development of the complex data structures
systems requires models that are capable of describing the
systems’ requirements, design, verification, implementation
and testing. This paper shows the development of such systems
using Object Enhanced Time Petri Nets (OETPNs) framework.
OETPN can model concurrency, reaction to internal and
external events, synchronization and temporal behavior with
fix and dynamic delays. OETPN keeps the bipartite graph
structure of the classical Petri Nets, but the unique kind of
tokens in PNs are changed to be any kind of objects to
represent the data, or tasks (sub OETPN) that can either be
active (i.e. threads of execution) or passive. OETPNs are
capable to communicate with each other through input and
output channels and to distribute concurrent tasks that are
moved through a computer network with a dynamical
structure (i.e. Task migration) without the need to stop the
execution of the other OETPN. Guards and mappings are used
to control the flow of execution in order to model the creation,
insertion, modification and extraction of information of
complex data structures. The mappings are also used to
implement the information transformation and the placement
of the resulted information at the output places of the
transitions. The types of the places are specified to allow setting
of objects or tasks. A new OETPN dynamic structure that is
best suited for the server side is introduced. A Java platform
that implement such applications is described and a complete
system to manage the operations of the data structures is
discussed with an example.

Keywords— complex data structures; Object Enhanced time
Petri Nets Framework; object-oriented programming and
distributed programming.

I. INTRODUCTION

Most of the programming languages that are used for
conceiving data structures systems and database systems are
based on object-oriented programming, so it is expected
from the modeling method to sustain the dynamical creation,
modification, and removing of objects, the dynamic
distributed concurrent execution that involves reaction to
internal and external events, as well as managing complex
structured information. Such method is expected to sustain
the entire development process. For very complex systems,
the method should sustain the models’ integration into
components that further include other components. These
were the goals of the proposed method that is intended to be
used through all the software development phases.

The UML (Unified Modeling Language [1]) and its real
time extensions like MARTE [2] require a set of diagrams to
cover all the different features of an application. The use for
many models for the same application increases the
development effort and reduce the possibility of creating an
interactive development environment.

A data structure [3] models abstract objects. It
implements special operation on this object, which are
classified as follows:

• Creation
• Deletion
• Update or modify
• Query

While Databases [4] and database systems play an
important role in everyday life, for example, banking,
airlines, hotel reservations system, etc. A database is a
collection of related data like facts that can be recorded.

A database has the following properties:

• Represents some aspects of the real world, and
the changes of the real world affect the
database.

• Describe logically coherent collection of data.

• Are designed, built, and populated with data
for a specific purpose.

Object Enhanced Time Petri Nets (OETPNs) [5] are
suited to analyze, to model and to synthesize complex data
structures and database system. Building an OETPN starts
with identifying the input and output channels. The main
OETPN is called a parent, while the active object (i.e. sub
OETPN) is called a child, the structure and behavior has to
be specified in the requirements. In the same manner, the
child can have children of its own and so on, creating a
multi-level OETPN.

The definition of an OETPN is [5]:

OETPN = (P, T, pre, post, Inp, Out, D, δ, Type,
type, Grd, Map, Λ, M) (1)

Where:

• P = {p1, p2, …, pm}, (m ≥ 0)

• T = {t1, t2, …, tn}, (n ≥ 0)

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 709

• pre: P × T → {0,1} (with 0 and 1 the natural
numbers, 0 denoting the lack of any link and 1 the
existence of a link between p and t) is the backward
incidence function.

• post: P × T → {0,1} is the forward incidence
function.

• δ is a mapping that assigns delays from a natural
number set D to the OETPN transitions.

• Inp is the input place set.

• Out is the output place set.

• D = {…,di, …, dj, …} ⊂ is a set representing the
transition delays assigned by a mapping δ: {t ∈ T||
ot| = 1} → D,

• Types = {Class1, Class2, …} represents the set of
software classes of the net,

• Type: P → Types is a mapping that assigns to each
place a class (i.e. type),

• Grd and Map are the net guard and mapping sets,

• Λ = {λt|t ∈ T, λt ⊆ grdt × mapt} is a set or relations

λt = {(,)} that assigns to each transition
t pairs composed of a guard and a mapping from
the sets grdt and mapt.

• M is the net vector marking with M(p) the marking
of the place p that identifies the object token oØf
the type (p).

A guard of a transition tk denoted by is a mapping:

 Where true and false are the values of the Boolean set.
 denotes the empty set. The set of all guards assigned
to a transition tk is denoted by grdk, and Grd denotes
the set of all the guards of the net.
A transition tk mapping denoted is:

Domain(M(p)) defined for the token that can be set in

the place p the set (possible very complex and infinite) of
the values assignable to object’s attributes. All the mapping
of a transition tk are included in the set mapk and Map
represents the set of all the mapping of the net.

OETPN models have the capability to model object-

oriented programming features: synchronization,
concurrency, asynchronous and synchronous
communication, and distributed implementation. Features
like association, aggregation and inheritance are also
implemented at the place types. OETPN have the capability
to clearly describe information transfer and task migration.
The nodes of the OETPNs are the places that are used to

store information, while the transitions describe the
transformation of the information.

This research aims to introduce a dynamic OETPN
structure that resembles list of a variable length. When a
client requests an interaction with the database, a new place
and a new transition are added to the list invoking the
client’s request as an active token (sub OETPN) thus
instantiating a new server thread for each request as shown
in the class diagram in fig. 1 where two clients are
communicating with the server.

Fig. 1. A class diagram of the client-server communication

Section III provides an explanation for the OETPN
complex data structures system. The structure of the
proposed OETPN model is described in section V and an
implementation example is presented in section VI.

II. RELATED WORKS

Petri nets (PNs) have been known for their capability to
describe concurrent dynamic systems and to verify their
properties. A review of the PN history is presented in [6].
Developments that concern the unification of the PNs
features lead to the creation of Unified PNs [7], [6], [8].
Object PN models were proposed in [8], [9]. The tokens are
implemented as objects and are considered active and
passive agents that are capable to interact via shared places
and shared transitions [10].

Time plays a primary role in the Enhanced Time PN [11]
where the Time PN contains input and output places. A
complex data structure system reacts to its input channels
(modeled by input places) and sends information to its
output channels (modeled by output places). An OETPN
keeps the bipartite graph structure of the PN but replaces the
former tokens with objects that can activate the transitions
when some conditions are met. The function mappings of
OETPN determines its marking. Some objects that are
created in an OETPN are active and represent seperate
threads of execution. When the thread execution is
completed, it becomes passive. If a place contains an active
or passive token and another token has to be set at the same
place, the old token is turned into passive and is replaced by
the new one.

A PN simulator is used for synthesizing data structures
and functions that create and manipulate instances of the
data structures [12].

Efficient data-structures and algorithms can be used to
improve the performance of a simulator of Coloured PNs
[13]. Fuzzy PN model is used for representing knowledge
and behavior of an intelligent object-oriented database
environment [14]. The authors of [15] utilized the concepts
of PNs to model databases by interpreting various database
structures. They proposed an algorithm to access the data
paths between two specified nodes in a database model.

710

Coloured PNs are used to generate models for the execution
of database transactions where algorithms to generate PNs
models that specify the transactions executions are proposed
in [16].

A PN based object-oriented modeling language that is
considered as an object-oriented extension for the high-level
PN that provides formal concurrent semantics for object-
oriented models was proposed in [17]. It was used for
analyzing a protocol performance.

The OETPN approach is based on PNs:
• that describe the interaction between objects,
• that model the objects’ behaviors,
• whose tokens are PNs leading to nets within nets,
• have complex tokens modelling objects that have

tokens leading to nets within nets.

III. OETPN RELATIONS WITH COMPLEX STRUCTURES

A. UML Component Diagram

 Fig. 2 shows the UML component diagram for the
distributed system that manages complex data structures.
First the client requests a thread from the server and once it
is granted, the clients communicates directly with the newly
created thread that communicates with the database.

Fig. 2. Distrubuted system UML component diagram

B. State Machine Model

Fig. 3 shows the UML state machine model for the
system where three threads of execution are created at the
client side for creation (s11 and s12), setting (s21 and s22)
and getting (s31) the information. The user uses the
keyboard as an input channel and the system sends the
information to the server via the TCP/ IP protocol. Theses
threads are executed concurrently.

Fig. 3. UML State Machine Model for the client

C. Sequence Diagrams

Fig. 3 shows the interaction between the client and the
server UML sequence diagram. First the client demands a

new thread to be created at the server side, when the srever
sends an answer containing the newly created thread port
number and IP address, the client becomes able to
communicate directly with this thread and to send the
commands for creation, setting, and getting processes along
with the information that is requied for each operation.

Fig. 4. The UML sequence diagram for the server

D. OETPN Model

The objects are instantiated using their class and can be
used to store information calling their setter methods or
retrieving information using their getter methods. Any
OETPN place has a specified type and can refer to an object
of this type. Generally, a class has one or more constructors
that accept or not parameters. The parameters are used to
create objects with the specified initial state. The calling of
the setter methods with provided parameters are used to
modify the object state according to the stored information
and the new transmitted information. The calling of the
getter methods with or without provided parameters are used
to extract the required information related the transmitted
information. In the case of the getter methods, the parameters
can be used to specify the information that are extracted from
the object and to modify the stored information with the
received information.

Fig. 5. Shows the client side OETPN that allows the user
to manage a complex data structures system. The places of
the type String are: p10, p11, p14, p15, p17, p18, p21, p22,
while the rest have the control signal type. The upper part of
this OETPN model is divided into two parts, the first part is
used to request a new thread of execution from the server
through the input channel p2 and sends it via the output
channel p3, then the OETPN waits for an answer from the
server via the input channel p5, when the answer is received,
the second part that it is used to create objects is enabled.

711

The user specifies the object type via the keyboard in p7, the
mapping of t3 transmits the requested object type via the
output channel p8 to the server, then the OETPN waits for
the user to specify the initial value via p10 and the mapping
of t4 transmites it to the server via the output channel p11.

The middle part of the model is responsible for setting
information in the object that is prevoiusly created, the user
can specify the positon where the information is to be stored
via p14, the mapping of t5 transmits the information to the
server via the output channel p15, then the user input the new
information by the keyboard via p17, the mapping of t6
transmittes this information via the output channel p18 to the
server.

The third part is responsible for retreiving information
(get) from the server, the user inputs the position via p21 and
the mapping of t7 transmits it to the server via the output
channel p22.

Fig.5. OETPN Client side model of a data structures management system

 The server side is an OETPN of a dynamic structure that
resembles a list of a variable length. The place p0 has the
control signal type, the places p2, p4, p6, ..etc. have a control
signal and a String type while the places p1, p3, p5, ..etc. are
of an OETPN type. When the server receives a request from
the client through the input channel p0, it instantly creates a
new transition t1 and two new places, p1 where the new
thread is created as an active token (sub OETPN) and p2
which is an output channel that sends a response to the server
containing the port numbere of the newly created OETPN,
then client can communicate directly with this active token,
and if a second client sends a request, a new transition t2 and
new places p3 and p4 are added to the server dynamic
structue and a second thread is invoked from p3 as an active
token for the second client and so on. Fig 6. shows the server
dynamic structure.

Fig.6. OETPN Server side model for the data structures management system

 Fig. 7 shows the server side’s active token, that can
create (instantiate) an object referred by the place p0 using
the transition t1, can set information in a previously created
object using t2, or can extract information from the
mentioned object using the transition t3. Let obj0 be this
object and the type of p0 its class. The type of p1 can be of
any type if the place p1 is used only to control the creation of
the object obj0. The place p2 can be used for the information
required for the initial value of obj0. If more than one
constructor can be used for obj0 creation, its specification
can be given by p1 or p2.

 In a similar manner, the setting of information in obj0
performed by t2 uses the information referred by p3 and p4.
One of them can be used to specify the position where the
information has to be stored, and the other gives the new
information that has to be stored. Obviously, the types of the
places p3 and p4 should correspond to the mentioned
purposes.

 The transition t3 used for retrieving of the information
get from the object referred by p5 the specification (i.e. the
position) of the required information.

 The input channels tc1, tc2, tc3, tc4 and tc5 are linked
directrly to the client side OETPN output channels via p6.
tc1 receives information to create a new object form the
client’s output channel p8, tc2 receives the initial value from
the client’s output channel p11, tc3 receives the position
(index) from the chlient’s output channel p15, tc4 receives
the new information to be set form the client’s output
channel p18. tc5 receives the position from the client’s
output channel p22.

 All the mentioned operations are performed by the
transition mappings and they use the methods implemented
in the adjacent classes assigned to places. The transition
guards use the class methods to control their executions also.

Fig.7 Server side’s active token model for the data structures management
system

IV. OETPN FOR TACKLING THE DATABASES (DB)

To manage a database, we need a connection. The
connection can be passed throght the OETPN nodes, with
this connection, a string can be used as a query to insert,
update, delete and select.

712

V. IMPLEMENTATION

The implementation was performed using Java
programming language. Figure 8 shows the class diagram for
the OETPN model implementation (i.e. simulation). An
OETPN is an instance of the OETPN class and an instance of
the OETPNdata. Each OETPN has an instance of Pre class
which is a two dimensional array of the input places for all
the transitions, an instance of Post class which is a two
dimensional array of the output places for all the transitions,
the marking which is a one dimensional array of type
OETPNdata that can either be sub OETPNs or an instance of
the DataHndler class according to the places types, the
DataHandler is a data structure (list, set, map, or DB), it has
three general methods (add, remove, and delete) that can
manage any type of data structures and are used by the
transition’s guards and map.

An instance of the Delay class which is a one
dimensional array of the transitions delays, an instance of the
Transition class for each transition which contains: the guard
conditions, a delay that is obtained from the Delay’s array
according to the transition index, the transition input and
output places have the marking index according to the Pre
and Post, temporary marking which is a one dimensional
array of type OETPNdata that reserves the tokens for the
transition when one of its conditions is true to execute it.

Each OETPN has a list of guards (one guard for each
transition), each guard has a list of subguards, each subguard
has a list of predicates and a list of map. If all the predicates
inside one subguard are true then the transition is enabled
and this modules the (And) logical operation. But if we have
two subguards that have the same map stored in two different
map lists. So if one of these predicates is true, then the map
is executed eitherway, and this modules the (OR) logical
operation. . If more than one sub guard is true, the first one
found is taken into consideration, and if there are conflict
transitions, the one with the lowest index wins the lottery.

The Mapping class contains the functions which are used
to validate predicates and loop over the subguards and set the
mapping in the output places of the transitions as well as
creating a new sub OETPN. Also, the Mapping class is
responsible for calculating the tokens after executing any
transition and update the marking.

The parent and the child OETPNs are executed
concurrently on different threads. The parent and the child
can communicate through the marking of the token that is set
at the parent place where the child is created. The parent
creates the structure, the guards and the mapping of the child,
when the child execution ends, its marking is accessible to
the parent along with the DataHndler objects. Each parent
has a one dimensional array of instances of SubPetriInfo,
each instance holds the information concerning each child so
the parent is able to initiate or terminates the sub OETPN’s
thread according to the parent’s guards, map and the parent
place index from which it is started.

Every OETPN must have a unique name, a network port
and an IP address so OETPNs can communicate with each
other. The DataOverNetwork represents the messages that

are exchanged by OETPNs. The NetworkListener class is
responsible for starting a thread that listens to the network
for the input data from other OETPNs.

The executer algorithm is in the OETPN class run
method, it runs with the period of 1time unit or when data is
received in the input channels, when a 1 time unit elapses,
the delay is decreased by one for every transition in the
execution list that only holds the enabled transitions, and
when the delay reaches 0, the transition is enabled.

Also, a DataOverNetwork instance has to be initiated to
send the data over network to another OETPN if the output
place of the transition is an output channel. OETPNs can
send and receive passive tokens (sub OETPNs) and objects
through their input and output channels respectively. The
passive token contains the complete data of the sub OETPN
where it is an instance of the OETPNdata class, it has its own
structure (pre and post) and behavior (guards conditions). An
instance of the DataOverNetwork is created while defining
the guard of the sender OETPN, it sends a one dimensional
array of OETPNdata containing the passive sub OETPN or
an object at the place index that is the input channel of the
recipient OETPN along with its network port and IP address.
If the output place of a transition is an output channel, the
Mapping class opens a new socket with an IP address and the
port form the DataOverNetwork instance, and then serializes
the instance and sends it.

The recipient OETPN compares the received marking
form the network with its own, if the place index contains
null, then that place remains the same, if not, it replaces the
old token with the one that is received from the network. If
the received token is a passive sub OETPN, it is executed
when it passes one of the recipient OETPN transitions that
has the guard condition to do so. This ensures that the
recipient OETPN continues working and there is no need to
shut it down, so only the sub OETPN is turned to passive and
is replaced by the new one.

Fig. 8. Class diagram of the OETPN model

The OETPNdata has another constructor for creating the
dynamic OETPN structure that is linked to the
NetworkListener class, when the dynamic OETPN receives a
request form a client, it creates a new transition and a new
place that are linked together as a list as shown in fig. 6 thus
by updating the Pre and Post instances accordingly by adding

713

the newly added transition and places. As soon as the new
place of type OETPN is created, a new thread is started with
a sub OETPN that is linked to the client’s input and output
channels. The sub OETPN directly manages the data
structure that is linked to this dynamic OETPN and performs
the creation, set, and get processes as requested by the client.

VI. IMPLEMENTATION EXAMPLE

This system can be used for a railway system. The
railway agent client side OETPN is shown in fig. First, the
agent sends a request to create a new thread to the dynamic
OETPN server that is shown in fig. 6, when the request is
granted and a new thread (sub OETPN) is created as shown
in fig. 7, the agent is now able to create a new train, and
assembles it using the set to add wagons and get to remove
wagons. The train is a list object as shown in fig. 9, the
train’s header p0 stores the train information (i.e. id, model
number, city, etc.). The places starting from p1 until the end
of the list are the train wagons, whenever a new wagon is
added, the list adds a new transition to connect the new place
with the previous one and a new transition to connect the
new place with p0. The transitions tc1, tc2, and tc3 are used
for a direct access to the places. When the agent wishes to
delete a place (wagon), the transition that has the place as an
input is deleted as well along with the transition that
connects it with p0, the transition that has the deleted place
as an output will be connected to the next place in line as
demonstrated in fig.9 with the red line.

Fig. 9 A train list object

VII. CONCLUSIONS

Complex data structures systems essential in our
everyday life where everything concern us is managed by it
(citizen records, banking accounts, university records, etc.).
OETPN can be used to model complex data structure
systems as the data structure objects can be manipulated by
it. An example to manage an information system for railway
is provided in this paper. We have extended the OETPN to
have an active tokens (sub OETPNs) and data structure
objects that can be anything like (list, sets, maps, databases,
etc.). The DataHandler class is responsible for providing the
create, set and get methods for each data structure type.

The dynamic OETPN structure at the server side that
resembles a list of a variable length is able to interact with
many clients and creates a thread as an active token for each
client to directly manage the data structure according to the
client requests and sends back the active token’s port number
and IP address when it is first created so the clients can store
them and modify the mapping for the transitions that are
responsible for sending tokens over the network via the
output channels. For future work, we intend to connect the
OETPN with UML and create OETPN models accordingly.

ACKNOWLEDGMENT

The authors would like to thank the Technical University
of Cluj-Napoca, the Automation and Computer Science
department for which none of this would have been possible
without their support.

REFERENCES

[1] OMG Unified Modeling Language.

http://www.omg.org/spec/UML/2.5/ ,2015.

[2] OMG. UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems, http://www.omgmarte.org/, 2011.

[3] Peter Brass, “Advanced Data Structures”, Cambridge university press,
ISBN-13 978-0-521-88037-4, 2008.

[4] Elmasri Navathe, “Fundamentals of Database Systems sixth Edition”,
Addision Wesley, ISBN-13: 978-0-136-08620-8, 2011.

[5] Tiberiu Letia, Dahlia Al- Janabi, “Object Enhanced Time Petri Nets”,
IEEE International Conference on Automation, Quality and Testing,
Robotics (AQTR), IEEE Xplore, DOI: 10.1109/AQTR.2018.8402743,
2018.

[6] J. R. Silva, J. A. S. P. Miralles, A. O. Salmon, P. M. Gonzalez del
Foyo, “Introducing Object-Oriented in Unified Petri Net Approach”,
ABCM Symposium Series in Mechatronices vol.4, pp. 451-459, 2010.

[7] C. Ghezzi, D. Mandrinoli, S. Morasca and M. Pezze. “ A Unified
High Level Petri Net Formalism for Time Critical Systems”, IEEE
Transactions on Software Engineering, DOI: 1.1109/32.67597, 1991.

[8] T. S. Letia and A. O. Kilyen. “Unified Enhanced Time Petri Net
models for development of the reactive applications”, 3rd International
Conference on Event-Based Control, Communicatio and Signal
Processing (EBCCSP), DOI: 10.1109/EBCCSP.2017.8022831, 2017.

[9] T. Miyamota, S. Kumagi, “A survey of objects-oriented Petri Nets
and Analysis methods”, IEICE Transactions on Fundamentals of
Electronics Communications and Computer Sciences,
DOI:10.11093/ietfec/e88-a.11.2964, 2005.

[10] V. A. Bashkin, “Modular Nets of Active Resources”, Automatic
Control and Computer Sciences, DOI:
10.3103/S0146411612010026, 2012.

[11] Tiberiu Letia, Dahlia Al- Janabi, “Object Enhanced Time Petri Nets”,
3rd International Conference on Event-Based Control,
Communication and Signal Processing (EBCCSP), DOI:
10.1109/EBCCSP.2017.8022831, 2018.

[12] Reggie Davidrajuh, “Efficient Data Structures for a New Petri Net
Based Simulator”, European Modelling Symposium, DOI:
10.1109/EMS.2014.10, 2014.

[13] Kjeld H. Mortensen, “Efficient Data-Structures and Algorithms for a
Coloured Petri Nets Simulator”, Third Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, pp. 57-75,
2001.

[14] Burcian Bostan-Korpeoglu, Adnan Yazici, “A fuzzy Petri net model
for intelligent databases”, Elsevier Science Publishers, DOI:
10.1016/j.datak.2006.08.003, 2006.

[15] Gurdeep Singh Hura, Harpreet Singh, N. K. Nanda, “Some design
aspects of databases through Petri net modeling”, IEEE Transactions
on Software Engineering, vol. SE-12, issue 4, pp. 505-510, 1986.

[16] Kees M. van Hee, Natalia Sidorova, Marc Voorhoeve, Jan Martijn
van der Werf, “Fundamenta Informaticae – Concurrency
Specification and Programming (CS&P), vol. 93, issue 1-3, pp. 171-
184, 2009.

[17] F. Vale de Azevedo Guerra, J. C. Abrantes de Figueiredo and D. D. S.
Guerrero, “Protocol Performance Analysis Using a Timed Extension
for an Object Oriented Petri Net Language”, Elsevier, Electronic
Notes in Theoretical Computer Science, vol.130, pp. 187-209, 2005.

714

